Air Quality, Lora
and Azure
Functions

Making a useful connected device with Azure.
Rob Miles

WWW.robmiles.com

Overview

About Rob

Why make an air quality sensor?

* Measuring air quality?

Building a device

e Connecting a device using MQTT
The Azure loT Hub and MQTT

e Using Azure Functions with MQTT

LoRa and Azure

About Rob:

e Taught Computer Science at Hull University for many years
* In charge of twisting minds and crushing dreams

* A Microsoft MVP

* Blogs at: www.robmiles.com
e Tweets at: @robmiles

* Writes books.....

Begin to Code with C# Paperback — 9 Sep 2016
Look inside ¥ by Rob Miles (Author)

Yriririrsr - 1 customer review

r See all formats and editions

Kindle Edition Paperback
£15.86 £16.69

Read with Cur Free App & Used from £10.77
39 New from £11.05

Want it delivered by tomorrow, 23 Nov.? Order within 2 hrs 30 mins and choose One-Day Delivery at checkout. Details
Note: This item is eligible for click and collect. Details

Become a C# programmer—and have fun doing it!

Start writing software that solves real problems, even if you have absolutely no programming experiencel

This friendly, easy, full-color book puts you in total control of your own learning, empowering you to build
unique and useful programs. Microsoft has completely reinvented the beginning programmer's tutorial,
reflecting deep research into how today’s beginners learn, and why other books fall short. Begin to
Code with C# is packed with innovations, from its “Snaps” prebuilt operations to its “Make Something

See all 2 images * Read more

Begin to Code with Python Paperback — 8 Dec 2017
Look inside ¥ by Rob Miles (Author)

W1’ * 6 reviews from Amazon.com

Begin

¢ See all 2 formats and editions

to COde ' Kindle Edition ‘ Paperback ‘
: £18.99 £29.99 prime
with
Read with Our Free App 5 Used from £30.19

29 New from £18.00

Want it delivered by Sunday, 6 May? Order within 23 hrs 57 mins and choose One-Day Delivery at checkout. Details
| Mote: This item is eligible for click and collect. Details

This full-color book will inspire you to start solving problems and creating programs with Python, even if

you have absolutely no programming experience. It's not just friendly and easy: it's the first Python

beginner's guide that puts you in control of your own learning, and empowers you to build unique

I programs to solve problems you care about.

Why make an Air
Quality Sensor?

How do we currently determine air quality?

* The Met Office weather forecast and climate prediction model has
been developed to include air quality forecasting in a new model
configuration called AQUM.

e Air quality is determined by the following factors:
* Emissions of pollutants
e Transport and dispersion of pollutants by winds
e Chemical reactions amongst reactive gases and aerosols
e Removal processes, such as rain and deposition on surfaces.

* The Met Office model uses UK and European maps of annual average
pollutant emissions to simulate the release of chemical species into
the atmosphere.

Calculated readings

* The thing to remember here is that a lot of these readings are created
by the use of software models

* There are some readings that are entered into the system, but these
are few and far between

* We thought it might be interesting to try and find out if we could use
cheap air quality sensors to improve on the resolution of the readings
and learn things about local air quality

* |t has turned out to be very interesting....

Good and bad air quality

* This table shows the mapping

between air quality values and i i
What they mean for us AQl (pg/n;") (pg/m3) Air Quality Descriptor
0-50 0.0-15.4 0-54 Good
* “Professional” sensors will also 51-100 155-404 55-154 Moderate
read the amount of Nitrogen e e e e e
. 151-200 65.5-1504 255-354 Unhealthy
OXIde and Ozone 201-300 150.5-250.4 355-424 Very unhealthy

* These sensors are quite expensive
and so we thought we’d start with

particles

Good and bad air quality

* This table shows the mapping
between air quality values and
what they mean for us

|))

e “Professional” sensors will also
read the amount of Nitrogen
Oxide and ozone

* These sensors are quite expensive
and so we thought we’d start with

particles

AQl
0-50
51-100
101-150
151-200
201-300

PMZ.S
(ug/m?)

0.0-15.4
15.5-404
40.5-65.4
65.5-150.4

PM,o
(pug/m?) Air Quality Descriptor
0-54 Good
55-154 Moderate
155-254 Unhealthy for Sensitive Groups

255-354 Unhealthy

150.5-250.4 355-424 Very unhealthy

Measuring air quality

€PM25
1 . Combusti rticles, i
* We decided to measure the density HUMAN HATR ooy
-/oum < 2.5um (microns)in diameter

(microns) in diameter

of smoke particles in the air

* These are produced by vehicles and
also by burning fossil fuels

@ PMqo
Dust, pollen, mold, etc.
<10 um (microns)in diameter

@ oR . . @
+ 5y , = =
X

e The ones we are interested in have
a radius of less than 2.5 microns

A micron is a millionth of a metre e R
FINE BEACH SAND

Technology as an agent of change

* | strongly believe that you can use technology to change the way that
people behave, and to make things better

* |f we can make people better informed of the consequences of their
actions we might be able to change what they do

* Plastic bags and doggy poo are good examples of successes in this area

* For example, if we end up producing evidence that a large number of
vehicles at the school gates produces peaks in air pollution, perhaps
people might not use their cars to take their kids to school quite so
much

A General Note about projects

* |f you want to learn how to use a particular technology one of the best
ways is to try and build something

e Just learning stuff by reading books and watching YouTube videos does
not work —you need to get making things

* When you start building things you find out what the real problems are

* We thought that the hard part of our project would be making the
Sensors

e This turned out not to be the case, but more of that later......

Measuring Air
Quality

How a sensor works

* The dust sensors work by shining a
beam of light through the air and
then detecting the light scattered
by the particles in the air

* The air can be moved by a fan, or
by using a heater that causes
convection

* You can buy sensors that work like
this for around 5 pounds

Electromagnetic
Sheilding

Exhaust Focusing
Lens

Photodiode
Detector

Infrared
LED

. o o o

Resistor / Light

Intake
Heating Element Baffle

The sensor we like

Nova PM sensor SDS011 High precision laser pm2.5 air quality detection
sensor module Super dust dust sensors, digital output

1183 orders

Price: £ 1 373

Shipping: Free Shipping to United Kingdom via AliExpress Standard Shipping ~
20-40 days

Quantity: - 1 +

Add to Cart Q 1369

(£) Returns accepted if product not as described, buyer pays return shipping
fee; or keep the product & agree refund with seller. View details »

&2 On-time Delivery
60 days

* This is the Nova SDS011 sensor
* |t has been used successfully on numerous air quality projects
* Has a pipe connection for the inlet and a fan that moves the air

e Can connectitto a PC or an embedded device

Building a device

Building a sensor node device

* A sensor node needs a micro-controller to get data from the sensor
and send it into the server backend

* |t could do other things too, for example drive a display
* Hardware for embedded devices is incredibly cheap
e They are rather powerful

* They can be programmed using Arduino platform

* This provides a whole set of libraries and a development environment for
embedded devices

The esp8266 is an awesome chip....

 Lots of WiFi options
* WiFi client over a serial port
* Fully programmable in C++ just like the Arduino
* WiFi access point and web server
e Support for UDP, TCP, secure sockets and mDNS
* Very easy to use with many examples

‘gARABRIAE
& b4 b3°07 01 _RX T

5 D&TDS D8 Ae RST

LELTL YT

w3 5) 604030201 y
o> 00000000

O
O
°e
O
o
[« 353
o3
o3
{~}
Q

* Making a connected client device

* Lots of ways to do this

* We're going to use MQTT but you can use it as a web server, or even a WiFi
access point (or both)

* | use the Wemos platform —around two pounds fifty a pop...

Enter the ESP32

* The company that made the
ESP8266 has now made its
successor - the ESP32

e This is a dual core device with
16M of RAM clocked at
240MHz

e |t costs around a fiver

* You can program it with the Arduino IDE or Python

* The Heltec version costs a bit more (15 pounds) but includes an OLED
screen and a LoRa (Low powered Radio) device of which more later

Programming your connected hardware

* Making your own connected hardware is cheap and fun
* You can program an embedded device in a variety of languages
* | like to use C++

e The software is free and can be used from within Visual Studio and
Visual Studio Code

* The programming environment works with a variety of devices
* There are pre-built libraries for lots of devices and services

The Monitair Sensor Node Firmware

e The sensor has been .
designed to be used as < win

a connected appliance wi *
e [t can operateasa WiFi " o
access point for AlFronome FEAMSES D
network configuration e o T

Other...

The Monitair Sensor Node Firmware

14:48 4 ull ¥ @)

{ Settings Wi-Fi
3 192.168.4.1 X |+ — O X

< =2 0O @ 192.168.4.1/ +*

e The sensor hosts a web e

+ ZyXEL§ Monitail‘ Home

page from which the Version L0

CHOOSE AN

u S e r Ca n CO n fl g u r-e WI F I AJ_Hull Just the settings to get you started

Set the SSID and password for wifi connections

. Monita
a n d I\/I QTT S ett I n g S Set the device, user, site, password and topic for MQTT

ZyXELE

Set the pixel colours and display levels

Other...

Set the hardware pins and configuration

Set the fixed location of the device

Select the link to the page that you want to view.

The Monitair Sensor Node Firmware

14:48 7 oll = @)
{ Settings Wi-Fi
3 192.168.4.1 X |+ — O X
< =2 0O @ 192.168.4.1/ +*
Wi-Fi

1 192.168.4.1 X |+ - O X

* There is also a “quick sapeaMonita
configuration” page for ce.. Ymon ! Monitair Configuration

AJ Hull Just the setting

p @) p § | ar s ettl N gS Set the sSID o JUST the settings to get you started

Monita

Set the device. WiFi access point name: [AJ_HullFromHome_F1{|

ZyXELS
Set the pixel c¢ WiFi password: ‘ooooooonnnno |

Other... Set the hardwa MQTT Password: ‘ouuooooooo ‘

Device lattitude: [-1000.000000 |

Set the fixed |

Device longitude: [-1000.000000 |

Select the link

The Monitair Sensor Node Firmware

14:48 4 ol T @)
{ Settings Wi-Fi
3 192.168.4.1 X |+ — O X
& =2 O @ 192.168.4.1/ <
Wi-Fi
1 192.168.4.1 X |+ - O X

. zyxers Monita

° | | . | &« > 0O @ | 192.168.4.1/Quick g
..as well as a seria I
. CHOOSE A N M[&9 com13 - O X
interface for factory il g | -
Jus -
f' . d Monita Setthe SSTD a Monitair node Monitair-15£bél -
CO n | g u ra t | O n a n Set the device.| WiFj 4 "ersion 1.0
ZyXELE
M Set the pixel ¢c¢ WiFi j5tarting node 0per-_aticrll)
teStl n g Other..| o\ e hardwa MQT'E:EEE izzz::: 5;;:]:-IAﬁfﬁE:l;‘iomHome_FlmEES connected ip address: 192.168.0.100

Starting process Console: Console QK

Starting process MOTT: MOTT OH

Devic Starting process Input switch: Input switch released
Select the link Starting sensor BME230: BME 280 sensor connected at 76
@Starting sensor Bir quality: SDS011 sensor active
Starting senscr Clock: Clock up to date

Starting sensor GPS: GPS sensor not implemented

Set the fixed | Devic

Type help and press enter for help W
£ >

Autoscroll Carriage return - | | 115200 baud Clear output

My first sensor

* This is my first “proper” sensor in
“breadboard” and finished versions

* [t measures temperature, pressure,
humidity and particle density

* The readings can be sent over MQTT
or LoRa to a server

* |t can be configured using strings of JSON that can be sent over MQTT,
serial connection or LoRa

* |t also has a GPS receiver to tag readings with their location

My products

* | now have two sensor designs

* One can also be used as a
remote visualizer

* This can connect to a data
source and display air quality
or any other data

Connecting a device
using MQTT

0T device connectivity

e The devices that we have looked at all have WiFi

* You can use them to create network connections so they can use
datagrams or connections

* They will work as web servers
* They can also support secure sockets

* You can connect to network services using restful connections

 However, the IoT community makes a lot of use of MQTT (Message
Queue Telemetry Transport)

* This is a very easy way to hook sensors and actuators together

Message Queue Telemetry Transport

* MQTT is a way to connecting sensors to endpoints
* |t has a publish/subscribe architecture

e The communication can run over serial or WiFi and is based on a
simple packet structure

* People have different opinions of how good it is, but it is very popular
and also supported by the Azure I0T Hub

* |t also runs (surprise surprise) on the esp8266
* [t is a great way to create cheap, connected, sensors

The MQTT broker

Sensor Data
MQTT Brok
o m QTT Broker m e

* The MQTT broker accepts messages and passes them on to
subscribers that have registered as listening to an endpoint topic

e Sensor nodes can subscribe to topics so that they can be sent
commands

* MQTT messages are just blocks of bytes
* We encode them into JSON strings

Connecting Arduino devices to MQTT

* | use PubSubClient for Arduino devices
* You can add it to your Arduino solution as you would any other library
* |t works well on the ESP8266 and ESP32 devices

* |t can talk to any MQTT broker, including Azure the one provided by
Azure loT Hub (as long as you use secure sockets for the connection)

* There is also a Microsoft client you can add to an Arduino project

Connecting to an MQTT broker

mgttPubSubClient->setServer(settings.mgttServer, settings.mgttPort);

mgttPubSubClient->setCallback(callback);

mgttPubSubClient->connect(settings.deviceName, settings.mqgttUser,
settings.mgttPassword);

e Setting up an MQTT client is simple enough

* We need some configuration information that identifies the device to
the broker

Set the server

mgttPubSubClient->setServer(settings.mgttServer, settings.mgttPort);

mgttPubSubClient->setCallback(callback);

mgttPubSubClient->connect(settings.deviceName, settings.mqgttUser,
settings.mgttPassword);

* This statement sets up the server
* The mgttServer element is the network address of the server

* The mgttport is the TCPIP port to be used
 Open data 1883
* Secure Sockets 8883

Assign a function for callbacks

mgttPubSubClient->setServer(settings.mgttServer, settings.mgttPort);

mgttPubSubClient->setCallback(callback);

mgttPubSubClient->connect(settings.deviceName, settings.mqgttUser,
settings.mgttPassword);

* This statement identifies the function to be called when the broker
sends an MQTT message to a topic the device has subscribed to

* Our application must contain a function called callback

e This is how we can use MQTT to control a device

Connect the device

mgttPubSubClient->setServer(settings.mgttServer, settings.mgttPort);

mgttPubSubClient->setCallback(callback);

mgttPubSubClient->connect(settings.deviceName, settings.mqgttUser,
settings.mgttPassword);

* This call actually makes the connection

* The device name is the MQTT device name
* On a standard MQTT broker the mgttUser is the username for the broker and
the mgttPassword is the password

* This is not particularly secure —anyone with the broker username and
password can add their own devices and subscribe to endpoints

Sending MQTT Messages

mgttPubSubClient->publish("airquality/data", buffer);

* A message is a string of bytes which is published on a given topic

 Topics are hierarchical and can contain wildcards which allow a
subscriber to receive from collections of sources

Receiving MQITT Messages

mgttPubSubClient->subscribe(settings.mgttSubscribeTopic);

* The node can nominate a topic which it is interested in

* The broker will relay messages sent to that topic onto that node

* This will cause the callback function to be called each time a message
for that topic arrives

Keeping the MQTT connection alive

mgttPubSubClient->1oop();

* MQTT clients send a message every 9 seconds to keep the MQTT
connection alive

* The node must make regular calls to the loop method in the MQTT
connection object to check for incoming messages and send the
heartbeat message

 This is how the broker determines which clients are connected

MQTT housekeeping

* There are a number of different Quality of Service (QoS) levels

* QoS 0 —the message is sent once and will be received once or never (like a
datagram)

* QoS 1 —the message will be delivered at least once (sender waits for an
acknowledgement and resends if one is not received)

* QoS 2 —the message will be delivered exactly once
* Azure |oT hub uses QoS level 2

 Stations can nominate a “last wishes” message to be sent to
subscribers if their connection is lost

MQTT Resources

* | use PubSubClient for the Arduino based sensor nodes
* |Install it as any other Arduino library

* Eclipse Paho has MQTT software for a wide range of platforms
* https://www.eclipse.org/paho/

* |f you want to run your own MQTT broker (perhaps for a home
network) take a look at Mosquitto

* https://mosquitto.org/

* The NodeRed tool is a great way to create flows of data between
devices

* https://nodered.org/

The Azure |oT Hub
and MQTT

Azure, MQTT and embedded devices

* Azure loT Hub provides a complete loT device management
framework

* This includes device management and simulation

* Devices can be created and managed securely and programmatically
* You can use it to create “proper” loT device networks

e Azure and MQTT

* The Azure loT Hub will interact with MQTT messages

* These can be passed on to your backend Azure applications and Azure
applications can also be sent to MQTT devices

The Azure loT Hub

Sensor : :
puoisn Sl scure o7 Hub ——
NOGE Azure

* MQTT enabled devices can connect to Azure loT hub, publish
messages and subscribe to topics

* The received messages then allow you to do lots of lovely things with
your connected devices

* There is also a lot of device management support too
e ...and it is all done over secure channels

Connecting to MQTT — Azure lot Hub

mgttPubSubClient->setServer(settings.mgttServer, settings.mgttPort);

mgttPubSubClient->setCallback(callback);

mgttPubSubClient->connect(settings.deviceName, settings.mqgttUser,
settings.mgttPassword);

* mgttServer — address of server

mgttPort — 8883 (secure sockets only)

* deviceName — name of the device

* mgttUser — unique username for device

* mgttPassword — Shared Access Signature (SAS) key for the device

Device Explorer

* The device explorer provides
device management and testing

* This is available in source form

* \We can view messages from
connected clients and send
messages to them as well

* This is not the only way to
provision devices

* There is also an api you can use to
build a workflow if you have lots of
devices

o5 Device Explorer — 0
Configuration Management Data Messages To Device

Send Message to Device:

loTHub: |HullPixelbot

Device ID: | JokeButton01 >

Message: |0ﬂc

[] Add Time Stamp [] Monitor Feedback Endpoint

Properties:

Key Value

Send Clear

Output

Sentto Device |D: [JokeBuiton01], Message:"on", message |d: 140318fe-b484-45a8-b4ef-3cfBa4f23610
Sentto Device |D: [JokeButton01], Message:"off". message Id: d018454d-ee21-454e-b2bb-
99719a014b73

Visual Studio Code

Edit Selection Vie Debug Terminal Help S oject (Workspace) - Visual Stu de

B DevkitDPS.ino %

OPEN EDITORS

x DevKitDPS
DevKitMQTTClienth C
variant.cpp C
varianth CAU

PROJECT (WORKSPACE)

-gitignore
config.h * Global_Device Endpoint
* ID

robsazurenode.pem
utility.cpp
utility.h

* registrationId =

 OUTLINE hasWifi =

b ARDUINO EXAMPLES

ATZURE 10T HUB DEVICES

S TERMINAL 1: powershell

o

QOA0 } Amrersmiles@deshullacuk In7,Col30 Spacess2 UTF-8 LF Cs+ <SelectProgrammer> DevkitDPSino MXCHIPAZ3166 < COM3 Win32 @ @&

* Visual Studio Code is a great place to create solutions
* You can register and monitor devices on the Azure |oT Hub

Using Azure
Functions and MQTT

Azure Functions

* An Azure Function is a lump of code that
runs in the cloud when an event occurs

* As a developer you just have to create
the code and deploy it into Azure

* There is no need to create a server

* You only pay for the time your function
is active, not the time that your server is
running

Azure Functions Events

* You can fire off an Azure function on a
variety of trigger events including web
requests and timed events

* We are going to trigger the function
when an incoming message is received
from a node

* The function will store the incoming
value in Azure Table Storage

S

=

Event Hub Http trigger leT Hub trigger
trigger

[#]

1= o ==

- -
CQueue trigger Service Bus Service Bus
Queue trigger Topic trigger

Tirner trigger

Azure Table Storage

* To keep thing simple I’'m going to store the readings in Azure Table
Storage

* This stores each reading as a row in a table
* Rows are defined by mapping a POCO (Plain Old CLR Object) value
* In my case I’m creating an instance of a C# class

 The instance must have two members used to index the table:
 PartitionKey — broad categorisation of the data
* RowKey — unique value for any given PartitionKey value

My Air Quality Reading

{ "dev":"Monitair-15fb61","temp":24.73,"humidity":41.33,
"pressure":1017.30,"PM10":13.00, "PM25":5.10, "timestamp":"1551432371"}

* This is the MQTT message that is sent by the sensor node to the server
* [t is formatted using JSON
* This needs to be stored on the server

My Air Quality Class

public class AirQReading

{

[JsonProperty("dev")]

public string PartitionKey { get; set; }
[JsonProperty("timestamp™)]

public string RowKey { get; set; }
public float PM10 { get; set; }
public float PM25 { get; set; }

[JsonProperty("temp")]

public float Temp { get; set; }

[JsonProperty("humidity")]

public float Humidity { get; set; }
[JsonProperty("pressure")]

public float AirPress { get; set; }

* The device property is
mapped onto the
PartitionKey

* The time property is
mapped onto the
RowKey

My Azure Function

[FunctionName("DataReceiver")]

[return: Table("AirQualityReadings")]

public static AirQReading Run([IoTHubTrigger("devices/#",
Connection = "IoTHubConnectionString")]EventData message,

TraceWriter log)

{
string readingJson = Encoding.UTF8.GetString(message.GetBytes());
AirQReading result = new AirQReading();
JsonConvert.PopulateObject(readinglson, result);
return result;

}

e This is the function that receives data and store it in the table

My Azure Function

[FunctionName("DataReceiver")]

[return: Table("AirQualityReadings")]

public static AirQReading Run([IoTHubTrigger("devices/#",
Connection = "IoTHubConnectionString")]EventData message,

TraceWriter log)

{
string readingJson = Encoding.UTF8.GetString(message.GetBytes());
AirQReading result = new AirQReading();
JsonConvert.PopulateObject(readinglson, result);
return result;

}

* This is the name of the function

My Azure Function

[FunctionName("DataReceiver")]

[return: Table("AirQualityReadings")]

public static AirQReading Run([IoTHubTrigger("devices/#",
Connection = "IoTHubConnectionString")]EventData message,

TraceWriter log)

{
string readingJson = Encoding.UTF8.GetString(message.GetBytes());
AirQReading result = new AirQReading();
JsonConvert.PopulateObject(readinglson, result);
return result;

}

* |dentifies the table into which the readings will be placed

* The storage connection string is given in the settings for the project

My Azure Function

[FunctionName("DataReceiver")]

[return: Table("AirQualityReadings")]

public static AirQReading Run([IoTHubTrigger("devices/#",
Connection = "IoTHubConnectionString")]EventData message,

TraceWriter log)

{
string readingJson = Encoding.UTF8.GetString(message.GetBytes());
AirQReading result = new AirQReading();
JsonConvert.PopulateObject(readinglson, result);
return result;

}

* This is the MQTT topic to be monitored
* This monitors messages from all devices (# is a wildcard)

My Azure Function

[FunctionName("DataReceiver")]

[return: Table("AirQualityReadings")]

public static AirQReading Run([IoTHubTrigger("devices/#",
Connection = "IoTHubConnectionString")]EventData message,

TraceWriter log)

{
string readinglson = Encoding.UTF8.GetString(message.GetBytes());
AirQReading result = new AirQReading();
JsonConvert.PopulateObject(readinglson, result);
return result;

}

* This maps to an SAS connection string held in the function settings file
* You need to copy this setting to your function when you deploy it

My Azure Function

[FunctionName("DataReceiver")]

[return: Table("AirQualityReadings")]

public static AirQReading Run([IoTHubTrigger("devices/#",
Connection = "IoTHubConnectionString")]EventData message,

TraceWriter log)

{
string readingJson = Encoding.UTF8.GetString(message.GetBytes());
AirQReading result = new AirQReading();
JsonConvert.PopulateObject(readinglson, result);
return result;

}

* This is the message instance that will be delivered into the function
call by Azure [oT hub

My Azure Function

[FunctionName("DataReceiver")]

[return: Table("AirQualityReadings")]

public static AirQReading Run([IoTHubTrigger("devices/#",
Connection = "IoTHubConnectionString")]EventData message,

TraceWriter log)

{
string readingJson = Encoding.UTF8.GetString(message.GetBytes());
AirQReading result = new AirQReading();
JsonConvert.PopulateObject(readinglson, result);
return result;

}

e The function can write messages into this log

My Azure Function

[FunctionName("DataReceiver")]

[return: Table("AirQualityReadings")]

public static AirQReading Run([IoTHubTrigger("devices/#",
Connection = "IoTHubConnectionString")]EventData message,

TraceWriter log)

{
string readinglson = Encoding.UTF8.GetString(message.GetBytes());
AirQReading result = new AirQReading();
JsonConvert.PopulateObject(readinglson, result);
return result;

}

e Convert the message payload into a string

My Azure Function

[FunctionName("DataReceiver")]

[return: Table("AirQualityReadings")]

public static AirQReading Run([IoTHubTrigger("devices/#",
Connection = "IoTHubConnectionString")]EventData message,

TraceWriter log)

{
string readingJson = Encoding.UTF8.GetString(message.GetBytes());
AirQReading result = new AirQReading();
JsonConvert.PopulateObject(readinglson, result);
return result;

}

* Create an empty A1rQReading instance

My Azure Function

[FunctionName("DataReceiver")]

[return: Table("AirQualityReadings")]

public static AirQReading Run([IoTHubTrigger("devices/#",
Connection = "IoTHubConnectionString")]EventData message,

TraceWriter log)

{
string readingJson = Encoding.UTF8.GetString(message.GetBytes());
AirQReading result = new AirQReading();
JsonConvert.PopulateObject(readinglson, result);
return result;

}

* Populate the AirQReading instance with values from the received
JSON string (missing values are left at default values)

My Azure Function

[FunctionName("DataReceiver")]

[return: Table("AirQualityReadings")]

public static AirQReading Run([IoTHubTrigger("devices/#",
Connection = "IoTHubConnectionString")]EventData message,

TraceWriter log)

{
string readingJson = Encoding.UTF8.GetString(message.GetBytes());
AirQReading result = new AirQReading();
JsonConvert.PopulateObject(readinglson, result);
return result;

}

e Return the POCO object that will be stored in the table

Azure Storage Explorer

Z2 Microsoft Azure Storage Explorer

File Edit View Help Experimental

EXPLORER

x |0

Collapse All Refresh All

4 B Storage Accounts
i B connectedhumberair
4 ™ Blob Containers
™ azure-webjobs-eventhub
™ azure-webjobs-hosts
b = File Shares
b i Queues
4 [H Tables
Bl $MetncsCapacityBlob
B $MetrnicsHourPrimaryTransa
B $MetricsHourPrimaryTransa
B SMetricsHourPrimaryTransa
B $MetricsHourPrimaryTransa
B $MetncsHourSecondaryTrar
B $MetricsHourSecondaryTral
B SMetricsHourSecondanyTral
B $MetnicsHourSecondaryTral

* YOou C

Actions = Properties v

URL https://connectedhumberair.table.corewindow

Type | Table

k2] AirQualityReadings X

B By g

Query Innport Export Add
PartitionKey | RowKey
Monitair-15fk61 1551325919
Manitair-15fba1 1551326279
Manitair-15f61 1551326639
Maonitair-15fb61 1551326999
Monitair-15fk61 1551327359
Monitair-15fk61 1551327719
Manitair-15fba1 1551328079
Manitair-15f61 1551328439
Monitair-15fk61 1551328799
Monitair-15fk61 1551329159
Monitair-15fk61 1551329519
Manitair-15fba1 1551329870
Manitair-15f61 1551330239
Manitair-15fhA1 1551330599

Showing 801 to 900 of 1,111 cached items

Activities

Clear completed Clear successful

i 2

Edit

8- i X)) O

Select All Column Options Delete Table Statistics Refresh

Timestamp PM10 PM25 Temp
2019-02-28T03:52:00.016Z 55 50 18.86
2019-02-28T02:58:00.036Z 54 49 18.87
2019-02-28T04:04:27.313Z 25 50 18.83
2019-02-28T04:10:00.076L 5.2 4.5 18.81
2019-02-28T04:16:00.2027 6.1 5.1 1878
2019-02-28T04:22:00.0897 6.0 53 181
2019-02-28T04:28:00.114Z 54 49 18.68
2019-02-28T04:34:00.1602 38 5.2 1863
2019-02-28T04:40:22.8977 5.6 50 18.57
2019-02-28T04:46:00.1792 21 4.6 1853
2019-02-28T04:52:00.1467 6.0 54 1847
2019-02-28T04:58:00.198Z 5.6 490 1847
2019-02-28T05:04:26.069Z 23 4.5 1844
2019-02-28T05:10:00.1847 A.5 EN 1841

e e o o o I A S A I O i Y O =4

The Air Quality Top Hat

e | built the Monitair software into a
top hat

* |t uses a ZPHO1 sensor and a
Wemos Processor
* This is not very reliable
e But it only costs around a fiver

* The hat uses neopixels to show the
air quality around the wearer

_.
The Air Quality Top Hat

e | built the Monitair software into a
top hat

* |t uses a ZPHO1 sensor
* This is not very reliable
e But it only costs around a fiver

* The hat uses neopixels to show the
air quality around the wearer

e The Wemos and the sensor are
attached to a hatband

* The Top Hat talks to Azure....

Demo

An Azure connected Air Quality top hat

LoRa and Azure

What is LoRa?

LOW Powered R a dio
L O R

Low powered radio

* Designed for use in battery powered devices
e Battery life measured in years

* LoRa radio transmitters are cheap and easy to add to a device

e Uses “Spread Spectrum Technology”
* Messages are sent “below the noise” as packets of data

* Best regarded as a form of “SMS” message rather than a continuous
telephone call

* There are limits on the message size and the number of messages you can
send in a given time

Long Range

e Range up to 15-20 km

 (although this depends a lot on conditions — take it with a pinch of salt)

e L ora wavebands
» 868 MHz for Europe
e 915 MHz for North America
e 433 MHz band for Asia

e You don’t need a licence to use the LoRa band

* But you should be using properly certified devices and not breach the usage
conditions — if you’re doing this properly

LoRa “peer to peer” connection

* You can use LoRa to connect two devices together
e Think of this as a car remote keyfob with a really long range

* Messages sent by one LoRa device will be received by the any other
LoRa device that is listening

* You would need to devise your own station addressing scheme

* You may also need to add security in the form of packet encryption
and verification

LoRaWan

* You can also use a LoRa device as part of a larger network

* A LoRa embedded device (an endpoint) will be associated with a given
LoRa application

* Within an application each LoRa device has a unique address
 |[f you were making a “cow tracker” you’d attach an endpoint to the cow

e Data between the endpoint and the gateway is encrypted

* A LoRa gateway forwards all endpoint messages to a LoRa server
* The server sends messages onto backend applications

e This forms a LoraWAN (LoRa Wide-Area Network)

i Fi ith LoR '
LoRaWAN cow tracking 't cows with LoRa endpoint

devices that contain a GPS
tracker and a LoRa wireless
transmitter

Devices send location
information every few hours

endpoints

. E :
| oRaWAN cow track| ng ndpoints send messages to a

LoRa Gateway

LoRa Gateway

endpoints

- LoRa Gat f d
LoRaWAN cow tracking ORa Gateway forwards

messages to the LoRa Server

LoRa Gateway [LoRa Server

endpoints network
connection

|l oRaWAN cow tracki ng LoRa Server sends messages to

your backend applications

R

LoRa Gateway LoRa Server

| |

endpoints network network
connection connection

The Lora server manages

I_O RaWAN COW traCkIﬂg multiple message from
_ different gateways
LoRa Gateway An incoming message is tagged
with all the gateways that
received it
LoRa Gateway LoRa Server
endpoints network network

connection connection

What is a gateway?

* A gateway has a LoRa radio receiver and a network connection
* Receives messages from the endpoint and forwards them to a LoRa server

* You can use LoRa endpoint devices as primitive gateways

e But they don’t expose the full functionality as they are only single channel
devices

* The cheapest “proper” LoRa gateway is around 120 pounds and runs
on a Raspberry Pi

* Best placed high up and outdoors

The Things Network

COMMUNITIES LABS LEARN SUPPORT FORUM SHOP LOGIN
a4
BUILDING A GLOBAL INTERNET OF
THINGS NETWORK TOGETHER.
#
A B

* The Things Network underpins a worldwide network of open LoRa
gateways

The Things Network

* Building networked communities using LoRa
* Provides the server backend for LoRaWAN applications

* Creates open source software and hardware which you can use to build your
own bespoke LoRa network

e Sells LoRa devices on Kickstarter

* You can buy your own gateway and register it on The Things Network

* Any LoRa endpoint can then use your gateway as a conduit onto The Things
Network

* The Things Network will host your LoRa applications and pass your endpoint
data into your own backend servers

LoRa gateways in Hull

e There are a number of =
gateways in Hull which are
attached to The Things i
Network 2 T

* We are trying to get more of - E e 8 ey

them installed B T gl

...........

What is a server?

* The LoRa server receives messages from the gateways, identifies ones
that are for applications it knows about, sorts out multiple messages
and then forwards them on to the application backend

* You can create your own servers, but for testing you can use those
provided by The Things Network (TTN) for free

* You can register your gateways on The Things Network and then create
your applications and connect your servers to them

* A great way to get started, but for “proper” services you would want to have
your own infrastructure

LoRa Security

e Because LoRa is a broadcast medium using public frequency bands
anyone can eavesdrop on any message

* An endpoint is associated with a particular application which is
identified in each LoRa packet that the endpoint sends

e Each application has an encryption key

* Keys can be “baked in” to a device or deployed via the LoRa network

* In addition, a given network session is encrypted by means of a
network session key

* Based on AES-128 (802.15.4 security)

Endpoint activation

* No such thing as “default password” for a LoRa device

* An endpoint must be activated before it can be used on a LoRa
network

e Two forms of activation:

 Activation By Personalisation (ABP):
* Credentials are “burned in” to the endpoint before it is deployed

e Over The Air Activation (OTAA):

* Endpoint is deployed containing an Application Root Key which is used to
authenticate a setup process that produces credentials to be stored in the
endpoint

Application datﬂa

& 13:32:51 17 1 payload: E3022A0405 celcius: 22.1875 humidity: 42 mbar: 970 ppm_10: 5 ppm_25: 4
& 13:31:45 payload: E2022A0404 celcius: 22.125 humidity: 42 mbar: 970 ppm_10: 4 ppm_25: 4

Uplink

Payload

E2 @2 2A 04 B4 =i

Fields

"celciu 22,125
"humidi 42
"mbar”: 970
“ppm_1@"’

“ppm_25"

Metadata

"time": "2018-12-11T13:31:45.3598153317"

* These are packets received from an endpoint
* The data values are encoded at the node and decoded on receipt

Application metadata

Uplink

Payload

2018-82-28T14:55:17.

"frequency”: 868.1

ateway

Estimated Airtime
61.696 ms

* This is the metadata that gets also gets pushed up to the application
* |t contains details of the gateways that received the packet

DDDDDDDDDDDDDD

Integrations

* The Things Network provides a cayenne SOLLOS
set of “integrations” that you use
to send LoRa messages into your
application
* You can use http GET/POST, or
MQTT or [FTT i ol
* They also provide a database for
short term storage (7 days) ET LT /Tapens® g

IF_ Maker Mipucr

Data Storage

INTEGRATION OVERVIEW

Status Running

Integrationinfo gotoplatform

"-:'j\ Data Storage (v2.0.1)

Platform ——-
)

Author The Things Industries BV

Description Stores data and makes it available through an API. Your data is stored for seven days.

e This integration will store your data for 7 days
* There is a restful interface for getting readings back

Reading back data

Curl

curl -X GET --header 'Accept: application/json' --header 'Authorization: key ttn-account-v2.PErgB6IcBdMz@YWST-Ql7vyuFGY3qIMSChbbDER:

Request URL

https://airqgualitysensortest.data.thethingsnetwork.org/api/v2/guery?last=7d

Response Body

1
"celcius": 28.5,

"device_id": "agel”,
"humidity™”: 48,
"mbar™: 978,
"ppm_18": 1,
"ppm_25": 1,

"raw": "yAIuAQE=",
"time™: "2818-12-85T12:17:55.625969737"

* |t is easy to pull data back from the Things Network
* The APl is defined by Swagger

Sending messages to a LoRa endpoint

* A LoRa endpoint will not normally be listening for messages from the
gateway
* This is to save power

e Class A

* Listen for a brief interval after the endpoint has sent something

e Class B
e Listen for a brief interval at scheduled times

e Class C

* Nearly continuous listening (not suitable for battery powered endpoints)

LoRa to Azure loT
\NK " |%
* The Azure loT Hub works with w ' < >

MQTT

 Remote devices can publish and Mqtt Bindings for Azure Functions
subscribe to topics it exposes

 However, you need something extra to connect Azure loT Hub to an
MQTT broker

* You need this because The Things Network acts as an MQTT broker to
expose LoRa messages to clients

e There are some MQTT bindings for Azure functions I’m playing with

e You could also use a timed Azure Function to download batches of
data

Lamp post sensors

* \We’ve built some sensors to fit on lamp
posts

* \We want to compare our results with
the professional sensors

* |t turns out that making something and
fitting it on a lamp post is actually quite

All on GitHub

* All my sensor designs are on GitHub

* This includes code and 3D printable files
for the cases

* These devices would serve as the basis
of any remote controlled sensor or

actuator
github.com/CrazyRobMiles/AirQuality

Connected Humber
CONNECTED HUMBER

Home Blog Network Projects AboutUs Meetups Partners

Together

We're building an open [0l network for the Humber region

e Connected Humber is a community group that is building sensors,
deploying them and then analysing the results

* We meet up at c4di in Hull on the first and third Thu. of each month

www . connectedhumber.org
gettogether.community/connected-humber

ag.connectedhumber.org

Air Quality Map | ConnectedHu

X+
& &

@ aq.connectedhumber.org/a

+

* B Q| @
wen Alr Quality Map

t flewton
Old Ellerby
|

B1238

Swine

Flinton

Coniston
4

Orchatd Pa

) 103" Q Longhill % b2 Al

. X Biltor

Sutton
Ll Lelley
@ L Bilton Grange
B12
@ = SeUleest®S Voo rdhn Village
Willerby AVERes

Brantingham 4

Anlaby §ommor
Elloughton

e 727g_Burr

67.5+

: 61.
Marfleet

Swanland

1105 5= 4 Hull
B1231

56-1.
B1362
’ 50.5-==
Hedon
¢ by Park {
T 2
b Brough

445—
38.5—
Hessle =

Burstwick
40

1 Ferriby

29.5==

F

Thorngumbald 75—
(e |

e

| v0.12, built Wed Jul 31 2019 \

Nev
Barton Waterside

OpenStreetMap contributors, Data: Connected Humber, Air Quality Web by Starbeamrainbowlabs

summary

e Building connected devices is easy and cheap

* The Azure loT provides industrial strength support for MQTT
connected devices

* You can use Azure Functions to bind to events generated by devices
* You can use Azure Table Storage to hold incoming data

* LoRa: low-power long-range networking moving small data packets
e LoRa gateways and apps can be attached to The Things Network

* You can use MQTT to Azure to receive LoRa data

www.robmiles.com connectedhumber.org

How can your system be broken
by spider eggs?

Data tells a story

Comparison - AQ1 & AQ2

[AQ2 Pm25 [] AQ2 Adjusted [] AQ1 PM25 [[] AQ1 Adjusted
100

75 !‘
5 ‘\| "] "
‘% wa I y

AR AR L AMA \L"
I M A WY DALY | A A

0
19:00 20:00 21:00 22:00 23:00 00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00

* We’ve found that once we get some readings we learn a little bit and
then we have a lot more questions...

