
Fundamentals of Electrical and Electronic Engineering

400462

Digital Electronics

Dr Ian M. Bell

Logic Building Blocks

We have already seen a number of logic circuits which are building blocks of
larger systems.

Multiplexers Adders
Seven Segment Decoder Subtractors
Tristate bus buffers / transceivers

1-of-N Decoders Comparators
Priority Encoders Parity Checkers

These functions can all be built using combinational logic (although more
complex versions may also exist, particularly for arithmetic circuits)

They are typically combined with registers, which hold the data to be processed
and the results of operations

There are other commonly used combinational functions, such as

Digital designers are familiar with functions such as these33, and use then when
appropriate without having to design them from scratch

Logic Building Blocks

• Many of the functions listed on the previous slide (and other similar
functions) are available as individual (discrete) integrated circuits.

– These ICs are used instead of building the circuits using basic gates

– Even with this approach only small circuits can be built

• Logic design of larger circuits is “on-chip”, rather than using discrete ICs

– Programmable logic devices (FPGAs etc.)

– Custom ICs

• For on-chip design commonly used logic functions are also often available via
the IC design software

– These “virtual components” are called IP blocks (Intellectual Property)

– Also called IP Cores

• Of course someone had to design the circuit block initially and if nothing is
available to meet your need, you have to design that circuit.

Logic Building Blocks – IP Blocks

• IP blocks are available for basic functions but also for more complex and
advanced functions which are commonly used in digital systems, e.g.

– SDRAM controller

– USB interface

– Floating point multiplier

• As ICs are designed using software tools the IP blocks can be selected and
configured by the design software

– Unlike discrete ICs, which are fixed, IP blocks are synthesised when
needed and can be flexible, offering options and variants

– IP blocks typically designed using Hardware Description Languages (HDL)
code, not schematics. Code may be hidden from users

• IP blocks may be purchased directly or provided with the design software
when it is purchased

– Open source IP blocks are also available

Example Discrete IC: Adder

IC manufacturer’s web site provides technical overview and production status

https://www.onsemi.com/PowerSolutions/product.do?id=MC14008B

Example Discrete IC: Adder

Manufacturer’s data sheet provides full technical data

Example Discrete IC: Adder

This data related to timing – rise/fall times and LH/HL propagation delays

Note change of delays with capacitive load, as discussed in earlier lectures

Example Discrete IC: Adder

ICs can be purchased from component suppliers / distributors

Using IP Blocks

• Access to IP blocks is typically via the design software for what ever system /
platform / programmable device family you are working with

• Screenshot shows Intel Quartus FPGA design software

 Left : IP catalog where available IP can be selected to add to the design

 Right: an instance of the LPM_ADD_SUB IP block has been added to a schematic

 Following slides slow configuration of and IP block

Using IP Blocks

As with discrete ICs IP blocks have datasheets / user guides

www.altera.com/literature/ug/ug_lpm_alt_mfug.pdf

Example FPGA IP Block: Adder/Subtractor

• Set number of bits

• Set mode: add, subtract or both

– The add-subtract input is same idea as in the adder / subtractor
discussed in an earlier lecture

Example FPGA IP Block: Adder/Subtractor

• Set input as both variable (normal add), or one fixed (add a constant)

• Set number type as signed or unsigned

– Unsigned binary or two’s compliment

Example FPGA IP Block: Adder/Subtractor

• Select which carry signals are used (carry in and out)

• Overflow is similar to carry, but specifically indicates result is outside
numerical range of circuits output

Example FPGA IP Block: Adder/Subtractor

• Note block symbol changes to show addition I/O with options selected

Commonly used Logic Functions

The following slides will describe the following commonly used logic functions

1-of-N Decoders

Priority Encoders

Comparators

Parity Checkers

1-of-N Decoders

• The name one-of-N decoder describes what the outputs do

• It has N outputs and one of them is ‘ON’ (active) at a time

• Active output may be 1 or 0, the others are at the opposite level

• Which output is active is determined by a binary input number

• Example if input value is 5 (binary 101), output 5 will be 1 and others 0

 Q0

Q1

Q2

Q3

I0

I1

Example circuit symbol

2-bit binary input

4 outputs

1-of-N Decoders

• Common sizes for these decoders include

o 1-of-4 (2 bit binary in)

o 1-of-8 (3 bit binary in)

o 1-of-16 (4-bit binary in)

o 1-of-10 (Binary Coded Decimal – BCD in)

• A BCD decoder can receive binary inputs greater than 9, in which case
typical devices give an all-inactive output

• Commonly used to select one of several subcircuits to be active based
on a binary address/selection signal

Active-High 1-of-4 Decoder

I1

I0

Q0

Q1

Q2

Q3

 Q0

Q1

Q2

Q3

I0

I1

I1 I0 Q3 Q2 Q1 Q0

0 0 0 0 0 1
0 1 0 0 1 0
1 0 0 1 0 0
1 1 1 0 0 0

Decoder IP Block

User selects number of bits and which outputs are available

The decoder selects
data from one of the
four registers to pass
onto the bus via the
tristate drivers.

Which tristate is on is
determined by the
address value (when
Enable is high)

If Enable is low all the
tristate drivers will be
off

Example use of
1-of-N Decoder

Priority Encoder

• Like the opposite of a 1-of-N decoder. N inputs, binary number output

• Decides on the highest priority input which it is given, and produces a
binary number which represents this

• May also have an output to indicate if any or no inputs are selected

I0 I1 I2 I3 Q1 Q0 V
0 0 0 0 0 0 0
1 0 0 0 0 0 1
X 1 0 0 0 1 1
X X 1 0 1 0 1
X X X 1 1 1 1

 I0

I1

I2

I3

Q0

V

Q1

I inputs
Q binary output
V “Valid” – a least one input active

Example: 4-Input Priority Encoder

Example use of Priority Encoder

Timers interrupt processor to carry out actions at specific time intervals

Alarm condition will override timer interrupts if they occur at the same time

Interrupt

Interrupt source

Processor

Time value

Load timer 2

Load timer 1

Priority Encoder

I0
I1

I7

System under
control of
processor

Timer

Timer
Load

Value <3:0>

Load

Done

Done

V

O<2:0>

R

R

ResetClock

R

ResetClock

Alarm
condition
detected

Value <3:0>

Parity Encoders and Decoders

• Parity is a way to check if a digital data word has been corrupted

• Allows single bit errors (i.e. one bit in the wrong state) to be detected

• Works by adding an extra bit to the word we want to check

• Simple to implement in hardware

• Particularly useful where

• Operation can be repeated if corruption is detected

• Simply knowing an error occurred is useful

Comparators

A comparator compares two binary words

Identity comparator
Outputs a single bit to indicate if the two words are equal or not

If (A=B) then …

Magnitude comparator
Indicates if a binary number on one input is equal to, greater than, or less
than a binary number on the other input

If (A=B) then …

If (A<B) then …

If (A>B) then …

If (A<=B) then …

If (A>=B) then …

Identity Comparator

E is an enable / expand input

Comparator IP Block

User selects number of bits which outputs are required

Parity Encoders and Decoders

• Used to check for corruption in data transmission and data storage

• Specific uses include

• RAM memory

• PCI buses in computers

• Microprocessor caches

• Serial data transmission

• Redundant Array of Independent Disks (RAID)

gallery.techarena.in

Parity Encoders and Decoders

• Two types of parity

o Even: parity bit set so total number of high bits is an even number,

o Odd: parity bit set so total number of high bits is an odd number

• If one of the bits is subsequently corrupted (including the parity bit) the
number of high bits will then be incorrect for the parity regime in use

• Example of even parity bit for several 8-bit words

01101001 0 4 1’s (even, so 0 parity bit)

01110000 1 3 1’s (odd, so parity bit is 1 so that total 1’s is even)

01001000 0 2 1’s (even, so 0 parity bit)

10111111 1 7 1’s (odd, so parity bit is 1 so that total 1’s is even)

Parity Check with no Data Error

Generate parity bit 01101001 ► 0

Data to transmit 01101001

Transmission OK 01101001 0

Received data & parity 01101001 0

Generate parity from received data 01101001 ► 0

Compare received and generated parity

Data received OK 01101001

Transmitter

Receiver

Parity Check with Data Error

Generate parity bit 01101001 ► 0

Data to transmit 01101001

Corrupted transmission 01111001 0

Received data & parity 01111001 0

Generate parity from received data 01111001 ► 1

Compare received and generated parity

Data Error Detected! 01111001

Transmitter

Receiver

Parity Encoder

•XOR gate provides an even parity bit for a 2 bit binary word

•To make larger parity generators use a tree of XOR gates

 I0

Even

Odd

I7

I1

I2

I3

I4

I5

I6

Parity Checker

 I0

OK

I7

I1

I2

I3

I4

I5

I6

P

