
LOGIC FUNCTIONS AND

LOGIC GATES

Logic function

Consider the states which result from the statement:

It will snow (S) if the temperature is low (L) and it is cloudy (C).

Mathematically: S = L AND C or

✓ = true (condition fulfilled); x = false (condition not fulfilled)

inputs output

L C S

x x x

x ✓ x

✓ x x

✓ ✓ ✓

Logic function

Consider the states which result from the statement:

It will snow (S) if the temperature is low (L) and it is cloudy (C).

Mathematically: S = L AND C or

✓ = true; x = false 1 = true; 0 = false

inputs output

L C S

x x x

x ✓ x

✓ x x

✓ ✓ ✓

inputs output

L C S

0 0 0

0 1 0

1 0 0

1 1 1

true = 1

false = 0

BOOLEAN ALGEBRA

Boolean algebra is a mathematical system that defines a series of

logical operations performed on sets of variables. Regarding the

digital circuits, the variables is limited to binary (0 and 1) set.

George Boole (1815 – 1864): English mathematician and philosopher,

developed this algebra ‘to give expression of fundamental laws of

reasoning in the symbolic laws of calculus’.

We would need a small set of basic (primitive) logic functions to

perform any logical operation:

– Logical multiplication (AND)

– Logical addition (OR)

– Logical negation (NOT)

BOOLEAN ALGEBRA: AND function

AND – logical multiplication – represented with the same symbols as used for regular

multiplication: * , · , () , or no space.

Let x and y represent input binary variables, then their logical multiplication is written as:

z = x AND y or z = (xy) or z = xy or z = x*y or x · y, where z – is output of the logical

multiplication (reads in all cases as ‘z equals x and y’).

Basic rules for AND:

- If all the inputs true, then output is true

- If at least one of the inputs is false, then output is false.

In short, AND provide an output ‘true’ when all of the input variables are ‘true’.

All possible combinations are represented in this table:

‘True’ is commonly denoted by a 1 and ‘false’ by a 0.

Such tabular representation of inputs and outputs of

logical function called truth table.

Note : input is not limited to just two variables – there might be unlimited number of inputs.

Exercise: build the truth table for four-input AND function: z= x AND y AND s AND p.

inputs output

x y z

1 1 1

1 0 0

0 1 0

0 0 0

BOOLEAN ALGEBRA: OR function

OR – logical addition – represented with + symbol.

With x and y representing input binary variables, OR is written as:

z = x OR y or z = x + y (reads as ‘z equals x or y’).

Basic rules for OR:

- If either or all of the inputs is true, then output is true

- If all of the inputs is false, then output is false.

In short, OR provides an output 1 when any of the input variables is a 1.
-

Truth table for OR:

Note : input is not limited to two variables – there might be an unlimited number

of logical inputs.

Exercise: build the truth table for four-input AND function: z= x AND y AND s AND p.

inputs output

x y z

1 1 1

1 0 1

0 1 1

0 0 0

BOOLEAN ALGEBRA: NOT function

NOT – logical negation (complementation) function – represented with

overbar ¯ or apostrophe ‘ symbols.

With x representing input binary variable, NOT is written as: z = y’ or

(reads as ‘z equals not y’ or ‘z equals y bar’).

Basic rule for NOT:

NOT inverts an input variable: if the input is 1, the output is 0 and vice versa.

In other words, NOT complements a variable.

Truth table for NOT:

Note : input is limited to one variable

yz =

input output

y z

1 0

0 1

x y (xy) x+y x (xy) (x+y) ...

0 0 0 0 1 1 1

0 1 0 1 1 1 0

1 0 0 1 0 1 0

1 1 1 1 0 0 0

AND OR NOT NAND NOR ...

BOOLEAN ALGEBRA: more functions

AND, OR and NOT form a universal set of functions from which all

other logic functions can be constructed.

basic set functions derived

from basic set

Boolean algebra: Basic rules I

Variable operating upon itself:

Variable operating on its complement:

Involution law:

Operating on variable with 0 or 1:

0xx =

xxx = xxx =+

1xx =+

xx =

00x = x1x =

x0x =+ 11x =+

Try to understand these rules and then to remember via completing exercises.

Boolean algebra: Basic rules II

Commutative laws: order of operation under AND and OR is unimportant:

Associative laws: show how variables are grouped together:

Distributive laws: show how to expand equations out:

(yx)(xy) = xyyx +=+

x(yz)xyz(xy)z ==

z)(yxzyxzy)(x ++=++=++

xzxyz)x(y +=+ z)y)(xx((yz)x ++=+

Checking Distributive law with truth table

First, how to build a truth table for function with N inputs (variables):

(1) Count the number, N, of variables.

(2) Number of rows in the table is 2 in power N : 2N.

(3) Write down all possible combinations of the input variables in the first N

columns.

(4) All individual terms are done via step-by-step consideration.

z)y)(xx((yz)x ++=+

Checking Distributive law with truth table

(1) Count the number, N, of variables: 3

(2) Number of rows in the table is 2 in power N : 2N.

(3) Write down all possible combinations of the input variables in the first N

columns.

(4) All individual terms are done via step-by-step consideration.

z)y)(xx((yz)x ++=+

Checking Distributive law with truth table

(1) Count the number, N, of variables: 3

(2) Number of rows in the table is 2 in power N : 23 = 8

(3) Write down all possible combinations of the input variables in the first N

columns.

(4) All individual terms are done via step-by-step consideration.

z)y)(xx((yz)x ++=+

23 = 8

Checking Distributive law with truth table

(1) Count the number, N, of variables: 3

(2) Number of rows in the table is 2 in power N : 23 = 8

(3) Write down all possible combinations of the input variables in the first N

columns.

(4) All individual terms are done via step-by-step consideration.

z)y)(xx((yz)x ++=+

23 = 8

Checking Distributive law with truth table

(1) Count the number, N, of variables: 3

(2) Number of rows in the table is 2 in power N : 23 = 8

(3) Write down all possible combinations of the input variables in the first N

columns.

(4) All individual terms are done via step-by-step consideration.

z)y)(xx((yz)x ++=+

23 = 8

Checking Distributive law with truth table

(1) Count the number, N, of variables: 3

(2) Number of rows in the table is 2 in power N : 23 = 8

(3) Write down all possible combinations of the input variables in the first N

columns.

(4) All individual terms are done via step-by-step consideration.

z)y)(xx((yz)x ++=+

23 = 8

Checking Distributive law with truth table

(1) Count the number, N, of variables: 3

(2) Number of rows in the table is 2 in power N : 23 = 8

(3) Write down all possible combinations of the input variables in the first N

columns.

(4) All individual terms are done via step-by-step consideration.

z)y)(xx((yz)x ++=+

23 = 8

equal

Truth table

Exercises:

1. Built the truth table for D = AB + C (see answer at the end of these lecture

notes)

2. Verify the rule with a truth table. xzxyz)x(y +=+

Boolean algebra: derived rules

x(x + y) = x

x + (xy) = x

yxy)x(x +=+

Few more useful relations ...

Boolean algebra: derived rules

x(x + y) = x

by distributive law:

by law and

by distributive law

by law

by law

Proof: xzxyz)x(y +=+

xxx = x1x =

11x =+

x1x =

xyxxy)x(x +=+

xy1x +=

y)1(x +=

1x =

x=

Boolean algebra: derived rules

x + (xy) = x

by distributive law

by law

by law

Proof:

11x =+

x1x =

1x =

x=

yxy)x(x +=+

Exercise: Derive the above rule using basic postulates and theorems and

check it with the truth table.

y)x(1(xy)x +=+

Reduction of logic equations using Boolean algebra

Eliminate redundant terms in logical expression: F = xy’z + xyz .

By inspection of the two AND terms one can find that xz is common to both

terms in F; therefore, by distribution : xy’z + xyz = xz(y + y’), also, y + y’ = 1.

Therefore: F = xz .

Lets check xy’z + xyz = xz equality with a truth table:

equal

23 = 8

total number of combinations of x, y, z

Reduction of logic equations using Boolean algebra

Simplify the logical expression:

F = x’yz’ + x’yz + xyz’ + xyz .

Comparing term 1 with term 2, one finds that the x’y group is common, thus by

distribution:

x’y(z’ + z) = x’y·1 = x’y .

Comparing terms 3 and 4, we find that xy is common, thus:

xy(z + z’) = xy

Putting results together gives F = x’y + xy .

Selecting a common group gives:

y(x’ + x) = y

Therefore, original expression is reduced to F = y.

Note: This is why we need this Boolean algebra.

greatly

simplified!

Boolean algebra: De Morgan’s theorems

The complement of any logic function can be found by inverting each

variable, replacing each AND with OR, and each OR with AND. The

constants (if any) are replaced with their complements: 0 → 1 and 1 → 0.

yxyx =+ ...zyx...zyx =+++

yxyx += ...zyx...zyx +++=

Note: De Morgan's theorems is very powerful because of the way they can

handle an inversion: ‘break’ it to simplify a logic expression or ‘add’ it to

express a logic function in a different way.

Any kind of algebra has its theorems ...

De Morgan’s theorem in truth table

yxyx =+

Exercise: check the second De Morgan's theorem with the truth table:

x y x + y

0 0 1 1 0 1 1

0 1 1 0 1 0 0

1 0 0 1 1 0 0

1 1 0 0 1 0 0

y yx + yx x

yxyx +=

equal

Applying De Morgan’s theorems: Forward

Formal way of doing it ...

Applying De Morgan’s theorems: Reverse

Reversing from the complement ...

Applying De Morgan’s theorems

Reversing from the complement ...

Applying De Morgan’s theorems

Reversing from the complement ...

Applying De Morgan’s theorems

Reversing from the complement ...

Applying De Morgan’s theorems

Reversing from the complement ...

Applying De Morgan’s theorems

Reversing from the complement ...

Applying De Morgan’s theorems

Reversing from the complement ...

total (and long) complements are removed

Applying De Morgan’s theorems

Exercises: apply De Morgan’s theorems to find an alternative form for the

following expressions:

Answers:

(a)

(b)

(c)

Reduction of logic equations using Boolean algebra

Exercises: Reduce the following

logic expressions

1. F = a’b + ab

2. W = abc’ + abc

3. Q = a’bc + a’b’c + a’b’c’ + abc

4. R = (x’ + y’)’(x + y’)

5. S = ab + a’b + ab’ + a’b’

6. P = (AB’(C + BD) + A’B’)C

7. V = (AB + AC)’ + A’B’C

More exercised are available in the

recommended textbooks.

The answers:

1. F = b

2. W = ab

3. Q = a’b’ + bc

4. R = xy

5. S = 1

6. P = B’C

7. V = A’ + B’C’

DIGITAL LOGIC SYSTEM: electronic circuit performing logical operations on

binary data.

GATES*: elementary circuits which carry out basic logic functions (AND, OR, NOT).

→ LOGIC →

INPUTS → SYSTEM → OUTPUTS

→ →

In reality, gates are available in groups (10-10000) integrated on one microchip.

*Note: gates are not identical to basic electronic components such as resistor,

capacitor, transistor etc. – they have more complex schematics.

Logical operations in digital circuits

In digital circuits, “1” is realised with high voltage levels – HIGH (or ON)

and “0” is associated with low voltage level – LOW (or OFF)

Graphical symbols for gates

s = (xy)

AND OR NOT

NAND

NOR

Building diagram from logic equation

Exercise: simplify the above logic function (tip: apply De Morgan’s theorem first)

and build a diagram for the simplified version. Use truth table to verify

the result.

(xy)y)(x +

x y

yx+

xy

xy)(

(xy)y)(x +

Deriving logic equation from a diagram

Function F = [(x’y)(x’ + z)]’ describes the logic output but it is not in an easy

understandable form. Removing the complement would simplify it.

• Let x’y = A, and x’ + z = B. Then F = (AB)’ and by De Morgan’s theorem

F = (AB)’ = A’ + B’, or F = (x’y)’ + (x’ + z)’

• Further application of De Morgan’s theorem will remove complement from each

of the two terms : (x’y)’ = x + y’ → (x’ + z)’ = xz’ , thus F = x + y’ +xz’

• Grouping terms with x allows reducing number of terms to two: F = x + y’

Deriving logic equation from a diagram

The truth table allows to check whether the circuit is performing as supposed.

F = x + y’ +xz’ = x + y’

equal

Summary

• Basic logic functions can be presented with truth tables and diagram

symbols.

• Postulates and theorems of Boolean algebra allows manipulating with logic

functions (see collection of logic postulates and theorems on the next slide).

• Logic equations can be simplified (reduced) using the postulates and

theorems of Boolean algebra.

• Logic equations can be converted to logic diagrams and can be revived from

logic diagrams.

Boolean algebra

Answer for the Truth table exercise

Solutions for the De Morgan’s theorems exercise

• Please take these notes with you next time

• Please complete the enclosed exercises

this week , ideally today.

