
BCD to 7-segment display

conversion

A
B
C
D

Recall: Binary Coded Decimal (BCD)

• SIMPLE CONVERSION TO DECIMAL used for driving a human interfaces

e.g. Displays.

• EACH DIGIT OF DECIMAL NUMBER IS REPLACED BY 4 BITS IN BINARY

CODE (normal BCD):

e.g. 4510

0100 0101

Hence 4510 = 01000101BCD

In our assignment, we need to perform the conversion of digits from 0 to 9

• EACH DIGIT OF DECIMAL NUMBER IS REPLACED BY 4 BITS IN BINARY

CODE (normal BCD):

510

0101

0101BCD = 510

In our assignment, we need to perform the conversion of digits from 0 to 9

Recall: Binary Coded Decimal (BCD)

4-bits (4-variable)

BCD input
Image on the 7-

segment display

Useful and not useful combinations of input variables

Decimal

0

1

2

3

4

5

6

7

8

9

These

combinations

are never used

BCD

Assume following representation of the digits:

Digits convention

Check the condition of the segment ‘c’ for each digit!

Composing truth table

Truth table for segment ‘c’ :

When this segment is lit up the

output F is ‘1’, when not the

output F is ‘0’.

Decimal
digit

BCD inputs Output for segment c

A B C D F

0 0 0 0 0 1

1 0 0 0 1 1

2 0 0 1 0 0

3 0 0 1 1 1

4 0 1 0 0 1

5 0 1 0 1 1

6 0 1 1 0 1

7 0 1 1 1 1

8 1 0 0 0 1

9 1 0 0 1 1

 1 0 1 0 X

 1 0 1 1 X

 1 1 0 0 X

 1 1 0 1 X

 1 1 1 0 X

 1 1 1 1 X

Composing truth table

Decimal
digit

BCD inputs Output for segment c

A B C D F

0 0 0 0 0 1

1 0 0 0 1 1

2 0 0 1 0 0

3 0 0 1 1 1

4 0 1 0 0 1

5 0 1 0 1 1

6 0 1 1 0 1

7 0 1 1 1 1

8 1 0 0 0 1

9 1 0 0 1 1

 1 0 1 0 X

 1 0 1 1 X

 1 1 0 0 X

 1 1 0 1 X

 1 1 1 0 X

 1 1 1 1 X

Segment ‘c’ is lit up for all digits

except ‘2’.

Karnaugh map for the 1-st canonical form

• Load all ‘1’ and ‘x’ from the truth table output into the relevant cells of the 4-variable

Karnaugh map.

•Keep the ABCD order as in the truth table.

Decimal
digit

BCD inputs Output for segment c

A B C D F

0 0 0 0 0 1

1 0 0 0 1 1

2 0 0 1 0 0

3 0 0 1 1 1

4 0 1 0 0 1

5 0 1 0 1 1

6 0 1 1 0 1

7 0 1 1 1 1

8 1 0 0 0 1

9 1 0 0 1 1

 1 0 1 0 X

 1 0 1 1 X

 1 1 0 0 X

 1 1 0 1 X

 1 1 1 0 X

 1 1 1 1 X

Karnaugh map for the 1-st canonical form

• Loop around the groups of ‘1’s and ‘x’s

where appropriate. Aim at making larger

groups, but remember that each group can

consist of 2, 4, 8, or 16 terms (‘1’ and ‘x’).

Groups of 3 or 6 terms are not allowed.

• Eliminate those loops, which do not have

unique elements (i.e. completely overlapped

by other loops). Remember that you don’t

need to use all of ‘don’t care’ terms (‘x’) in

the looping.

• Minimise the expression inside each loop,

following the general rule.

Karnaugh map for the 1-st canonical form

• There could be several options for building the Karnaugh map

1-st canonical form

• Compose sum of products (SOP) out of all loops minimised expressions.

• This is the final minimised expression.

SOP into NAND gates

Transfer the obtained SOP expression in the form suitable for NAND gate

implementation. For that apply the de Morgan’s theorems twice:

SOP into NAND gates

Draw the circuit diagram using NAND gates only.

Karnaugh map for the 2-nd canonical form

• Collect ‘0’ and ‘x’ in the standard 4-variable map. Loop around the ‘0’ s and ‘x’ as appropriate.

Remember that you don’t need to use all ‘x’.

Decimal
digit

BCD inputs Output for segment c

A B C D F

0 0 0 0 0 1

1 0 0 0 1 1

2 0 0 1 0 0

3 0 0 1 1 1

4 0 1 0 0 1

5 0 1 0 1 1

6 0 1 1 0 1

7 0 1 1 1 1

8 1 0 0 0 1

9 1 0 0 1 1

 1 0 1 0 X

 1 0 1 1 X

 1 1 0 0 X

 1 1 0 1 X

 1 1 1 0 X

 1 1 1 1 X

2-nd canonical form

• Minimize expression inside each loop using the standard rules for the 2-nd canonical form.

• Form product of sum (POS) expression out of individual minimised expressions.

•This is the final minimised expression for the 2-nd form:

2-nd canonical form

• There could be several options for building the Karnaugh map

POS into NOR gates

Transfer the obtained minimised POS expression in a form suitable for the

NOR gate implementation. For that, apply the de Morgan’s theorem twice:

POS into NOR gates

Draw the circuit diagram:

Compare NAND and NOR circuits

Conversion to one type of gates

One of the important implications of De Morgan’s

theorems is that any logic function can be implemented

solely with NAND gates (AND + inverter)

or

with NOR gates (OR + inverter).

Conversion to one type of gates

How is this done in practice and which type of the

gate is preferable?

or ?

Conversion to one type of gates: SOP

First canonical form or sum of products (SOP) can be conveniently

represented with NAND gates only:

F = AB + CD

Applying De Morgan’s theorem: F’=(AB)’(CD)’ Applying De Morgan’s

theorem again:

F’’ = F =((AB)’(CD)’)’

A

B

D

C

((AB)’(CD)’)’

Conversion to one type of gates: POS

Second canonical form or product of sum (POS) can be conveniently

represented with NOR gates only:

F = (A+B)(C+D)

Applying De Morgan’s theorem: F’=(A+B)’ + (C+D)’

Applying De Morgan’s theorem again:

F’’ = F =((A+B)’ + (C+D)’)’

A

B

C

D

((A+B)’ + (C+D)’)’

