
Three Thing Game and 
MonoGame

Rob Miles
Department of Computer Science



Getting Started on Windows 8.1

1. Install Visual Studio 2013

2. Install XNA 4.0
https://msxna.codeplex.com/

3. Install MonoGame
http://www.monogame.net/

• You can use this installation to create games for 
Windows Desktop and also ones that can be published in 
the Windows Store

29-Oct-14 2



Making a MonoGame Project

• Monogame adds new project types

29-Oct-14 3



MonoGame Sample Applications

• If you are new to development you might 
want to start from one of my sample 
applications

• These are guaranteed to work 

29-Oct-14 4



MonoGame Sample Applications

• If you are new to development you might 
want to start from one of my sample 
applications

• These are guaranteed to work 

– Mostly

29-Oct-14 5



Cracker Chase

• Cracker Chase is not a very good game

• Chase the crackers with the cheese

29-Oct-14 6



How Games Work

• Every game that has ever been written has 
these fundamental behaviours:

• Initialise all the resources at the start
– fetch all textures, models, scripts etc

• Repeatedly run the game loop:
– Update the game world

• read the controllers, update the state and position of 
game elements

– Draw the game world
• render the game elements on the viewing device

29-Oct-14 7



Cracker Chase Behaviours 

• The CrackerChase game does three things

• It loads the content

– It updates the game

– It draws the game

• We can take a look at how these work

29-Oct-14 8



A Word about Sprites

• A sprite is a game object 
that has a position and a 
texture

– Plus a few other things

• We create these to 
represent game objects

29-Oct-14 9



Sprite Data

• This is all the data held in a standard sprite

29-Oct-14 10

class Sprite
{

protected int screenWidth;
protected int screenHeight;

protected Texture2D texture;
protected Rectangle rectangle;

protected float xPosition;
protected float yPosition;

protected float xResetPosition;
protected float yResetPosition;

}



Sprite Data

• The size of the screen it is part of

29-Oct-14 11

class Sprite
{

protected int screenWidth;
protected int screenHeight;

protected Texture2D texture;
protected Rectangle rectangle;

protected float xPosition;
protected float yPosition;

protected float xResetPosition;
protected float yResetPosition;

}



Sprite Data

• The texture that contains the sprite image

29-Oct-14 12

class Sprite
{

protected int screenWidth;
protected int screenHeight;

protected Texture2D texture;
protected Rectangle rectangle;

protected float xPosition;
protected float yPosition;

protected float xResetPosition;
protected float yResetPosition;

}



Sprite Data

• A rectangle that defines the width and height 
of the sprite

29-Oct-14 13

class Sprite
{

protected int screenWidth;
protected int screenHeight;

protected Texture2D texture;
protected Rectangle rectangle;

protected float xPosition;
protected float yPosition;

protected float xResetPosition;
protected float yResetPosition;

}



Sprite Data

• The X and Y position of the sprite on the 
screen

29-Oct-14 14

class Sprite
{

protected int screenWidth;
protected int screenHeight;

protected Texture2D texture;
protected Rectangle rectangle;

protected float xPosition;
protected float yPosition;

protected float xResetPosition;
protected float yResetPosition;

}



Sprite Data

• The place to put it back to when the game 
resets

29-Oct-14 15

class Sprite
{

protected int screenWidth;
protected int screenHeight;

protected Texture2D texture;
protected Rectangle rectangle;

protected float xPosition;
protected float yPosition;

protected float xResetPosition;
protected float yResetPosition;

}



Creating a background sprite

• This is how I make a simple sprite for the 
background

• I want the sprite to be the width of the 
screen, and placed at 0,0

29-Oct-14 16

Texture2D cloth = Content.Load<Texture2D>("Tablecloth");

background = new Sprite(screenWidth, 

screenHeight,cloth,screenWidth,0,0);



Creating a background sprite

• The game sets these values so that the 
game will automatically fit any sized 
screen

29-Oct-14 17

Texture2D cloth = Content.Load<Texture2D>("Tablecloth");

background = new Sprite(screenWidth, 

screenHeight,cloth,screenWidth,0,0);



Creating a background sprite

• The background sprite has a reset position 
of 0,0 so that it is displayed over the whole 
screen

29-Oct-14 18

Texture2D cloth = Content.Load<Texture2D>("Tablecloth");

background = new Sprite(screenWidth, 

screenHeight,cloth,screenWidth,0,0);



Lists of Sprites

• The game contains a list of sprites that are 
all the objects on the screen

• Each time I create a new sprite I add one 
to the list 

29-Oct-14 19

List<Sprite> gameSprites = new List<Sprite>();

…

gameSprites.Add(background);



Other kinds of sprites

• The cracker I am chasing is a Target sprite

• This is like a Sprite, but can position itself 
randomly on the screen

29-Oct-14 20

cracker = new Target(screenWidth, screenHeight,

crackerTexture, crackerWidth, 0, 0);

gameSprites.Add(cracker);



Size Calculation

• The game calculates the width of the 
cracker as a fraction of the size of the 
screen

• This makes the game work on any sized 
display

29-Oct-14 21

int crackerWidth = screenWidth/20;



Other kinds of sprites

• A Mover sprite can be made to move 
around the screen 

29-Oct-14 22

cheese = new Mover(screenWidth, screenHeight, cheeseTexture,

cheeseWidth, screenWidth / 2, screenHeight / 2, 500, 500);



Other kinds of sprites

• A Mover sprite can be made to move 
around the screen 

• When we create a mover we tell it how fast 
it is allowed to move

– The units are pixels per second

29-Oct-14 23

cheese = new Mover(screenWidth, screenHeight, cheeseTexture,

cheeseWidth, screenWidth / 2, screenHeight / 2, 500, 500);



Game Behaviours

• A game has update and draw behaviours

• These map onto the methods in the XNA 
game class

• What happens in the methods depends on 
the state of the game

– Starting the game

– Playing the game

29-Oct-14 24



The Update method

• The Update method is called 60 times a 
second when the game is running

29-Oct-14 25

protected override void Update(GameTime gameTime)
{

switch (state)
{

case GameStates.Start_Screen:
updateStartScreen(gameTime);
break;

case GameStates.Playing_Game:
updateGamePlay(gameTime);
break;

}
}



The Start Screen Update method

• The update method for the startscreen
state is looking for the player to press the 
space key

29-Oct-14 26

void updateStartScreen(GameTime gameTime)
{

KeyboardState keys = Keyboard.GetState();

if (keys.IsKeyDown(Keys.Space))
startPlayingGame();

}



The Start Screen Update method

• This is how a game will test the keyboard

• This code looks for a space key

• You can look for any key 

29-Oct-14 27

void updateStartScreen(GameTime gameTime)
{

KeyboardState keys = Keyboard.GetState();

if (keys.IsKeyDown(Keys.Space))
startPlayingGame();

}



Starting to Play the Game

• When the game starts we reset each sprite 
and then set the score and timer values

29-Oct-14 28

void startPlayingGame()
{

foreach (Sprite s in gameSprites)
s.Reset();

timer = 600;
score = 0;

state = GameStates.Playing_Game;
}



Starting to Play the Game

• This loop works through all the sprites and 
resets them all 

29-Oct-14 29

void startPlayingGame()
{

foreach (Sprite s in gameSprites)
s.Reset();

timer = 600;
score = 0;

state = GameStates.Playing_Game;
}



Starting to Play the Game

• The XNA clock ticks 60 times a second so this 
will give me 10 seconds of gameplay

29-Oct-14 30

void startPlayingGame()
{

foreach (Sprite s in gameSprites)
s.Reset();

timer = 600;
score = 0;

state = GameStates.Playing_Game;
}



Starting to Play the Game

• Each time we eat a cracker we get 10 points

29-Oct-14 31

void startPlayingGame()
{

foreach (Sprite s in gameSprites)
s.Reset();

timer = 600;
score = 0;

state = GameStates.Playing_Game;
}



Starting to Play the Game

• This starts the game playing by changing the 
state

29-Oct-14 32

void startPlayingGame()
{

foreach (Sprite s in gameSprites)
s.Reset();

timer = 600;
score = 0;

state = GameStates.Playing_Game;
}



Gameplay Update – cheese 

• This is part of the gameplay update method
• It tells the cheese to start moving if a key is pressed

29-Oct-14 33

void updateGamePlay(GameTime gameTime)
{

KeyboardState keys = Keyboard.GetState();

if (keys.IsKeyDown(Keys.Up))
cheese.StartMovingUp();

else
cheese.StopMovingUp();

...
}



Gameplay Update : sprites

• This part of the update method updates 
each sprite

29-Oct-14 34

void updateGamePlay(GameTime gameTime)
{

...
foreach (Sprite s in gameSprites)

s.Update(1.0f / 60.0f);
...

}



Gameplay Update : sprites

• This tells the sprite that a 60th of a second 
has gone by since the last update
– We change this if the speed of the game 

changes

29-Oct-14 35

void updateGamePlay(GameTime gameTime)
{

...
foreach (Sprite s in gameSprites)

s.Update(1.0f / 60.0f);
...

}



Gameplay Update : Targets

• This code checks to see if the cheese has hit a 
cracker

29-Oct-14 36

void updateGamePlay(GameTime gameTime)
{

...
foreach(Target t in crackers)
{

if(cheese.IntersectsWith(t))
{

BurpSound.Play();
t.RandomPlace();
score = score + 10;

}
}

}



Gameplay Update : Targets

• If it has we play a burp sound and update the 
score

29-Oct-14 37

void updateGamePlay(GameTime gameTime)
{

...
foreach(Target t in crackers)
{

if(cheese.IntersectsWith(t))
{

BurpSound.Play();
t.RandomPlace();
score = score + 10;

}
}

}



Gameplay Update: state

• This updates the timer and status

• When the timer reaches 0 the game ends

29-Oct-14 38

void updateGamePlay(GameTime gameTime)
{

...
timer = timer - 1;

int secsLeft = timer/60;
messageString = "Time: " + secsLeft.ToString() + " Score: " + score;

if (timer == 0)
gameOver();

}



Drawing the game world

• There are separate draw methods for the 
gameplay and start modes

29-Oct-14 39

void drawGamePlay()
{

spriteBatch.Begin();

foreach (Sprite s in gameSprites)
s.Draw(spriteBatch);

float xPos = (screenWidth - messageFont.MeasureString(messageString).X) / 2;

Vector2 statusPos = new Vector2(xPos, 10);

spriteBatch.DrawString(messageFont, messageString, statusPos, Color.Red);

spriteBatch.End();
}



Drawing the game world

• Each sprite is asked to draw itself

29-Oct-14 40

void drawGamePlay()
{

spriteBatch.Begin();

foreach (Sprite s in gameSprites)
s.Draw(spriteBatch);

float xPos = (screenWidth - messageFont.MeasureString(messageString).X) / 2;

Vector2 statusPos = new Vector2(xPos, 10);

spriteBatch.DrawString(messageFont, messageString, statusPos, Color.Red);

spriteBatch.End();
}



Sprite Drawing

• The sprite uses the data it holds to draw 
the texture at the right place on the screen

29-Oct-14 41

public virtual void Draw(SpriteBatch spriteBatch)
{

rectangle.X = (int)Math.Round(xPosition);
rectangle.Y = (int)Math.Round(yPosition);
spriteBatch.Draw(texture, rectangle, 

Color.White);
}



Making the Game

• The game is very simple, but can be 
expanded by adding more items

• We can also give items behaviours very 
easily

• The game has been structured so that it is 
easy to make new types of sprite

• Sample code at:

www.ratherusefulseminars.com

29-Oct-14 42



Also available….

www.robmiles.com


