
The Hull Pixelbot and HullOS

Rob Miles
www.robmiles.com

About Rob:

• Taught Computer Science at Hull University for many years
• In charge of twisting minds and crushing dreams

• A Microsoft MVP

• Blogs at: www.robmiles.com

• Tweets at: @robmiles

• Writes books…..

Begin to Code with C#

Begin to Code with Python

C# Yellow Book

Overview

• What is the Hull Pixelbot?

• HullOS – an embedded robot operating system

• Making a robot with two brains – adding a network co-processor

• Azure IoT Hub and MQTT

• Creating a web based HullOS code editor

What is the Hull Pixelbot?

Hull Pixelbot project

• Flexible

• Cheap to make

• Open source

• Fun to build

• Arduino based

• Easy to program

• Extensible

• Connectable

A flexible robot

• Can be controlled by an Arduino device
• I use the Arduino Uno or Arduino Pro-Mini

• Uses stepper motors for movement
• Slow but very precise

• Has a coloured pixel
• Allows you to give your robot a personality

• Has a distance sensor
• Allows the robot to react to its environment

• Other sensors can be added as you fancy

Cheap to make

• Arduino processor
• Less than five pounds

• Cheap stepper motor
• Around one-fifty each

• Cheap pixel ring
• Around one-fifty

• Distance sensor, battery holder, cables and
nuts and bolts add around four pounds

• You can get the electronics for around ten
pounds our so: www.aliexpress.com

Open Source

• The designs for the robot and
controlling software are all open
source

• Everything is published on GitHub

https://github.com/HullPixelbot

Fun to build

• Full construction notes are on GitHub

• I can supply laser cut and 3D printed
elements
• Or you can make them yourself

• You can even design your own robot
chassis and just use the software if you
wish

• I also do “Build a Robot in a Day”
events if you fancy signing up for one

The Arduino Uno

• Arduino Uno
• Advantages:

• Really cheap
• Easy to write code
• Plenty of i/o – both analogue and digital
• A proper embedded device

• code runs directly on the hardware

• Disadvantages
• Not that powerful
• Very limited program and data space (32K and 2K)
• No networking ability built in

• you have to use serial connections to transfer information

• The Uno is fantastic for simple, disconnected devices but is no good for
anything that you’d like to connect to the outside world.

Easy to Program?

• You can write programs in C++
using the Arduino environment
• Programs are downloaded into

the Arduino via the serial port
and persisted in EEPROM

• It is very easy to get simple
things to happen, for example
lights and movement, but more
tricky when you want to do
several things at once

Easy to program

• HullOS provides a simple
environment that can be used
to create programs for the
robot

• The program code is
interpreted and executed on
the robot itself

• It runs on a multi-tasking
platform

Demo 1: Talking to a robot

Robot extensibility

• The Arduino controls the motors, pixel
and speaker

• It also receives data from the distance
sensor and the serial port
• There are six analogue/digital

connections remaining available

• You can use this platform as a robot
controller that underpins a more
powerful device

HullOS extensibility

• HullOS has been designed to be easy to extend

• We can add new sensors and outputs very easily

int readRandom()
{

return random(1, 13);
}

struct reading randomReading = { "random", readRandom };

#define NO_OF_HARDWARE_READERS 4

struct reading * readers[NO_OF_HARDWARE_READERS] = { &distance, &light, &moving, &randomReading };

Connectable

• The Arduino itself is not a very connectable
device
• It only has a serial port for external connectivity

• But it is easy to connect the Arduino robot
controller to another device that provides a
connection

• That device can then offload all the robot
control to the Arduino

HullOS – an embedded robot
operating system

HullOS

• I wanted to use a Hull Pixelbot to teach programming
• It turns out that writing C++ is not a great starting point

• So, I’ve invented my own embedded Operating System
• It is called HullOS

• It implements an embedded scripting language which is quite fun

HullOS scripting

• The HullOS scripting language is a bit like
Python

• It is compiled and interpreted on the robot
platform
• We send the program into the robot in pure text

via the serial port

• The robot retains the compiled program in
EEPROM and runs it when it is powered on

avoid obstacles
begin
forever

green
move
d = @distance
if d < 100:

red
turn 90

end

Sending programs to the robot

• I’ve created a terminal
program in Python that does
the downloading of the
programs and runs them

• There’s also a C# version

• You can type in the
programs using any terminal
program

Sending programs to the robot

• We can send programs to the
robot down the serial port

• HullOS converts the programs
into an intermediate code
that is interpreted

• The intermediate code is
stored in EEPROM in the
Arduino

HullOS Intermediate Language

• The Intermediate Language is stored inside
the robot

• Each command is a two letter code
• Command family

• Command option

• This is interpreted when the program runs

• It is all powered by switch statements…

CLl1
PNg
MF20000
VSd=@distance
CFd<100,l3
PNr
MR90
CA
CLl3
CJl1
CLl2

HullOS Intermediate Language

CLl1 << Loop Label
PNg << Go green
MF20000 << Move a long way
VSd=@distance << Load variable d with distance value
CFd<100,l3 << If d is less than 100 jump to l3
PNr << Go red
MR90 << Rotate 90 degrees
CA << Wait for the rotate to complete
CLl3 << Jump destination if condition fails
CJl1 << Jump the top of the loop
CLl2 << Exit label for loop used by break

High Level Languages and Magic

• I want to make it clear that there
is nothing “magical” about how
programming languages work

• HullOS script uses the same
fundamental principles as all
languages

• It is very easy to add new high
level and low level language
features

Demo 2: Inside HullOS

Making a robot with two brains –
adding a network co-processor

The Robot with two brains….

• Arduino Pro and ESP8266
• The HullPixelbot can use two processors

• Arduino Pro mini for the input/output and motor control

• Wemos D1 mini for the connectivity

• This is a great way to create i/o heavy devices
• Use a serial connection to pass commands between the two

• For most simple systems you only really need a single
device
• But the Arduino Pro mini only costs around a pound….

The esp8266 is an awesome chip….
• Lots of WiFi options

• WiFi client over a serial port

• Fully programmable in C++ just like the Arduino

• WiFi access point and web server

• Support for UDP, TCP, secure sockets and mDNS

• Very easy to use with many examples

• Making a connected client device
• Lots of ways to do this

• We’re going to use MQTT but you can use it as a web server, or even a WiFi
access point (or both)

• I use the Wemos platform – around two pounds fifty a pop…

WiFi and the esp8266

• Lots of WiFi options
• WiFi client over a serial port

• Fully programmable in C++

• WiFi access point and web server

• Support for UDP, TCP, secure sockets and
mDNS

• Very easy to use with many examples

• Making a connected client device
• Lots of ways to do this

• Web server, web sockets, MQTT, LAN,
Access Point

An esp8266 as a web server

• Create an embedded web server on a network:
1. Select the Wemos D1 R2 and D2 mini platform

2. Select the ESP8266WebServer>HelloServer example

3. Set the SSID and the password in the code

4. Deploy the program

5. Connect via a terminal to view server output

6. Connect via device on same subnet: esp8266.local using MDNS

• C++ methods are fired to deal with web requests

• This makes it possible to use web protocols to do just about anything
with the device

An esp8266 as an access point

• Create an embedded web server on its own access point:
1. Select the Wemos D1 R2 and D2 mini platform

2. Select the ESP8266WiFi>WiFiAccessPoint example

3. Set the SSID and the password in the code

4. Deploy the program

5. Connect via a terminal to view server output

6. Connect a device to the access point. Browse: http://192.168.4.1

• This is a popular way to perform initial device configuration
• Device hosts a web site that allows the entry of the WiFi parameters which are

then stored in EEPROM for future use

Esp8266 as an access point

• Only really supports one client at a time

• Can use websockets to communicate with the device

• The esp8266 also contains an internal file store that you can use to
hold html files and other resources

• There is support for over the air (OTA) updates via WiFi

• Will support HTTPS connections too

Enter the ESP32
• The company that made the

ESP8266 has now made its
successor - the ESP32

• This is a dual core device with
16M of RAM clocked at
240MHz

• It costs around a fiver

• You can program it with the Arduino IDE or Python

• The Heltec version costs a bit more (12 pounds) but includes an OLED
screen and a LoRa (Low powered Radio) device

Hull Pixelbot Network Client
• The Hull Pixelbot Network

client program runs in a
connected device

• It connection to MQTT

• It provides a serial
connection that is used to
configure a robot

• The client passes network
messages into the Arduino
to control the robot

Connecting a robot with MQTT

Message Queue Telemetry Transport

• MQTT is a way to connecting sensors to endpoints
• It has a publish/subscribe architecture

• The communication can run over serial or WiFi and is based on a
simple packet structure

• People have different opinions of how good it is, but it is very popular
and also supported by the Azure IOT Hub among other people..

• It also runs (surprise surprise) on the esp8266 and ESP32

• It is a great way to create cheap, connected, sensors

Azure, MQTT and the esp8266

• MQTT PubSubClient for esp8266
• I’m using the PubSubClient for esp8266 available at

https://github.com/knolleary/pubsubclient

• It needs to be modified for Azure:
• Azure uses secure sockets, a different port and has larger packets

• You can find out how to set everything up here:

• http://www.radupascal.com/2016/04/03/esp8266-arduino-iot-hub

• Azure IoT Hub
• The Azure IoT Hub will respond to MQTT messages

• These can be passed on to your backend Azure applications and Azure
applications can target MQTT devices

Setting up MQTT in the Wemos

• This is the setup function
• It runs when the device starts

• It starts the server running :
• mqtt_server contains the name of the server : HullPixelbot.azure-devices.net

• 8883 is the port number being used (this is an Azure thing)

• It also binds a method (callback) to incoming MQTT messages from the server

void setup() {
Serial.begin(9600);
robotSerial.begin(9600);
setup_wifi();
client.setServer(mqtt_server, 8883);
client.setCallback(callback);

}

Making the connection

• This caches the initial button position so that we detect edges correctly

void reconnect() {
// Loop until we're reconnected
while (!client.connected()) {

Serial.print("Attempting MQTT connection...");
if (client.connect("RedRobot","HullPixelbot.azure-devices.net/RedRobot",

"SharedAccessSignature sr=HullPixelbot.azure-
devices.net%2Fdevices%2redrobot&sig=1zsdfsweraerweeY7lp4Kc1x%2B%2FhVZ7apgGWQQ%3D&se=1")){

Serial.println("connected");
client.publish("devices/RedRobot/messages/events/", “robot started");
client.subscribe("devices/RedRobot/messages/devicebound/#");

} else {
Serial.print("failed, rc=");
Serial.print(client.state());
Serial.println(" try again in 5 seconds");
delay(5000);

}
}

}

Making the connection

• This caches the initial button position so that we detect edges correctly

void reconnect() {
// Loop until we're reconnected
while (!client.connected()) {

Serial.print("Attempting MQTT connection...");
if (client.connect("RedRobot","HullPixelbot.azure-devices.net/RedRobot",

"SharedAccessSignature sr=HullPixelbot.azure-
devices.net%2Fdevices%2redrobot&sig=1zsdfsweraerweeY7lp4Kc1x%2B%2FhVZ7apgGWQQ%3D&se=1")){

Serial.println("connected");
client.publish("devices/RedRobot/messages/events/", “robot started");
client.subscribe("devices/RedRobot/messages/devicebound/#");

} else {
Serial.print("failed, rc=");
Serial.print(client.state());
Serial.println(" try again in 5 seconds");
delay(5000);

}
}

}

The access key is created by the Azure
IOT device manager

It can be given a lifetime after which the
device can no longer connect

Making the connection

• This caches the initial button position so that we detect edges correctly

void reconnect() {
// Loop until we're reconnected
while (!client.connected()) {

Serial.print("Attempting MQTT connection...");
if (client.connect("RedRobot","HullPixelbot.azure-devices.net/RedRobot",

"SharedAccessSignature sr=HullPixelbot.azure-
devices.net%2Fdevices%2redrobot&sig=1zsdfsweraerweeY7lp4Kc1x%2B%2FhVZ7apgGWQQ%3D&se=1")){

Serial.println("connected");
client.publish("devices/RedRobot/messages/events/", “robot started");
client.subscribe("devices/RedRobot/messages/devicebound/#");

} else {
Serial.print("failed, rc=");
Serial.print(client.state());
Serial.println(" try again in 5 seconds");
delay(5000);

}
}

}

This statement publishes a message to
the Azure IOT hub to tell the hub that

the device is connected

Making the connection

• This caches the initial button position so that we detect edges correctly

void reconnect() {
// Loop until we're reconnected
while (!client.connected()) {

Serial.print("Attempting MQTT connection...");
if (client.connect("RedRobot","HullPixelbot.azure-devices.net/RedRobot",

"SharedAccessSignature sr=HullPixelbot.azure-
devices.net%2Fdevices%2redrobot&sig=1zsdfsweraerweeY7lp4Kc1x%2B%2FhVZ7apgGWQQ%3D&se=1")){

Serial.println("connected");
client.publish("devices/RedRobot/messages/events/", “robot started");
client.subscribe("devices/RedRobot/messages/devicebound/#");

} else {
Serial.print("failed, rc=");
Serial.print(client.state());
Serial.println(" try again in 5 seconds");
delay(5000);

}
}

}

This statement subscribes to messages
from the IOT hub

When a message arrives the callback
function is called to deal with it

Decoding incoming messages

• This method runs when the robot receives a message

• The message is passed into the Arduino that controls the robot

char message [200];
void callback(char* topic, byte* payload, unsigned int length) {

int i;
// Build a robot command
for (i = 0; i < length; i++) {

message[i] = (char)payload[i];
}

// Put the terminating character on the end of the message
message[i] = 0;

// Pass the command onto the motor processor
sendRobotCommand(message);

}

Azure IoT Hub

• The IoT hub will collect and manage
messages from connected devices

• It exposes service points to connect
other Azure applications

• You can also set up your own MQTT
hub on other platforms, for example
Raspberry Pi, or use one hosted by
AdaFruit

Device Explorer
• The device explorer provides

device management and testing
• This is available in source form

• We can view messages from
connected clients and send
messages to them as well

• This is not the only way to
provision devices

• There is also an api you can use to
build a workflow if you have lots of
devices

Sending an MQTT message from Azure

• This is the code that sends a message to the robot from Azure

• Note that we convert the message into ASCII bytes before sending

• When this runs the callback function in the robot runs and picks up the
message string – which is a HullOS program

ServiceClient serviceClient = ServiceClient.CreateFromConnectionString(iotHubConnectionString);

var serviceMessage = new Microsoft.Azure.Devices.Message(Encoding.ASCII.GetBytes(message));
serviceMessage.Ack = DeliveryAcknowledgement.Full;
serviceMessage.MessageId = Guid.NewGuid().ToString();

await serviceClient.SendAsync(MQTTName, serviceMessage);

await serviceClient.CloseAsync();

Demo 3: Sending messages to the
robot

Creating a web based HullOS
code editor

A web based code editor

• Now that we can send messages over
MQTT we can start to send programs to
our robot

• It might be fun to have a web based
program editor
• You’re assigned a robot and can create and

deploy programs to it

• So I built one of those next

The HullOS code editor

• I’m not very good at ASP.NET
applications

• However, it does demonstrate the
principles quite well

• The code editor could do with a
lot of attention, I would like
automatic code keyword
completion and better support for
mobile code editing

Demo 4: Editing HullOS programs

• The Robot Rumble is a team game that I’m working on

• Teams spend 1 minute programming and 30 seconds running their
programs to try and get their robots as far down the field as possible

• I want to get a bunch of people together to do this……

The Hull Pixelbot project

• If you fancy getting involved, or
looking at the code and designs you
can find out all about the Hull Pixelbot
here:

hullpixelbot.com

