
Connected Humber Hardware Meetup
MicroPython on Ultra-Cheap Devices

Version 1.0 Rob Miles

Devices
• ESP8266 – very cheap: 2 pounds. WiFi and good performance. Not many pins.

• ESP32 – slightly more expensive: 5 pounds or so. WiFi, Bluetooth, Dual Core, lots of pins that

are easy to configure

MicroPython
It’s a free download from here. There are versions for ESP32 and ESP8266

https://micropython.org/download

Note: Don’t use the latest ESP32 version (1.12) if you want to use Azure IoT Hub because the

secure socket support (which Azure needs) is broken in 1.12. Use 1.11 instead.

Use the esptool to install MicroPython on devices. You can get the tool from here. It’s a Python

program, so you’ll need Python too.

https://github.com/espressif/esptool

The commands to put an image onto an ESP 32 device is:

esptool.py --chip esp32 --port com4 erase_flash

esptool.py --chip esp32 --port com4 --baud 460800 write_flash -z 0x1000 file.bin

You’ll have to select the serial (com) port yourself and download the binary file (see the highlighted

elements). If you are using an Apple or Linux device the port will look different – something like

/dev/ttyUSB0.

Once you have installed MicroPython you can talk to it via a serial terminal. It supports the REPL

prompt so you can type in Python code and run it. But we advise you to take a look at Thonny. It’s a

Python IDE (Integrated Development Environment) that is available for Windows, MAC and Linux.

 Thonny
Get Thonny from here. The download links are at the top right of this page.

https://thonny.org/

You can write and debug Python programs on your computer, but you can also download and run

Python programs in an attached MicroPython device.

This is Thonny in action. I’m editing the Python
file boot.py which runs in the device when it
starts. This version of boot.py connects the
device to the local WiFi. Note that need to add
your ssid and password to this program.

These will be stored in clear text inside your
device. So if anyone gets hold of the hardware
they could read them back.

You use the Shell window to talk to Python
running in your device.

https://thonny.org/

Connect Thonny to an attached device
Select Tools>Options to open the options menu. Then select the Interpreter tab.

Here you tell Thonny that you are using
the MicroPython interpreter and specify
which serial port it is connected to.

You can also use this dialog to install
MicroPython on devices, but to do this
you have to configure Thonny and tell it
where the espytool program is on your
system.

Once you have made your settings you
just need to click OK to save them and
they will be used each time you use
Thonny.

Run a Python program from Thonny

Once you have connected Thonny to a
device you can run a Python program in
the device by just opening the file and
pressing the green Run button. This will
cause the program to be downloaded into
the device and start running.

You can use the File>Save command to
save a local copy of the file or to save it
onto your device:

Any printed output from the file will
appear in the shell window at the
bottom. You can type in input to your
program here too.

Make Python programs run when your device is powered on

If you select File>Save you will be asked where
you want to save the currently selected
program file.

You can save to your computer or to the
MicroPython device.

boot.py runs when your machine starts

main.py runs when boot.py has finished.

If a programming session gets stuck you can
reset your Python device by clicking the red
STOP button in the user interface.

What do you want to do next?

Hardware Control
MicroPython can control hardware pins on your device. Take a look here:

http://docs.micropython.org/en/latest/library/machine.Pin.html

Coloured LEDS
MicroPython supports NeoPixels for coloured lights. Take a look here:

http://docs.micropython.org/en/latest/esp8266/tutorial/neopixel.html

MQTT Support
You can use a MicroPython device to talk MQTT. There’s a great description here:

https://boneskull.com/micropython-on-esp32-part-2/

Azure IOT Hub Support
MicroPython can talk to an Azure IOT Hub. Take a look here:

http://blogs.recneps.org/post/Connecting-the-ESP-8266-to-Azure-IoT-Hub-using-MQTT-and-MicroPython

Web Server
You can use the device as a web server and write Python code that responds to user web requests.

Start here:

https://github.com/pfalcon/picoweb

Using a Real Time Clock Device
The DS3231 device is a fine Real Time Clock. You can find code to use it here:

https://github.com/adafruit/Adafruit-uRTC

BME280 environmental sensor
If you want to sense temperature, humidity and air pressure you can use the BME280. There’s a

driver here:

https://github.com/SebastianRoll/mpy_bme280_esp8266

Version 1.0 Rob Miles March 2020

